
D
ra

ftLimit theorems for multiscale stochastic
dynamical systems

Longjie Xie
Jiangsu Normal University

The 16th Workshop on Markov Processes and Related Topics
Changsha, July 12-16, 2021

Longjie Xie (JSNU) Multiscale stochastic systems July 15, 2021 1 / 26



D
ra

ftOverview

1 Background
Averaging principle - functional LLN
Normal deviations - functional CLT

2 Main results
Functional LLN
Functional CLT: Case 0
Functional CLT: Case 1
Functional CLT: Case 2

Longjie Xie (JSNU) Multiscale stochastic systems July 15, 2021 2 / 26



D
ra

ftBackground - Averaging principle

Consider the two-time-scales stochastic system:

dY ε
t = F (Xt/ε,Y

ε
t )dt + dWt , Y0 = y ∈ Rd (1.1)

where X = (Xt)t>0 is an ergodic Markov process possessing a unique
invariant measure µ(dx), and 0 < ε� 1 represents the separation of time
scales.
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where X = (Xt)t>0 is an ergodic Markov process possessing a unique
invariant measure µ(dx), and 0 < ε� 1 represents the separation of time
scales.

. Y ε
t (slow variable): mathematical model for a phenomenon appearing

at the natural time scale;
. Xt/ε (fast variable): fast random environment/effects at a faster time

scale (with time order 1/ε).

Usually, the system (1.1) is difficult to deal with due to the two widely
separated time scales. Thus a simplified equation which governs the
evolution of the system over a long time scale (as ε→ 0) is highly
desirable.
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Consider the two-time-scales stochastic system:

dY ε
t = F (Xt/ε,Y

ε
t )dt + dWt , Y0 = y ∈ Rd (1.1)

Intuitively,
Xt/ε ⇒ µ(dx) as ε→ 0.

Thus, by averaging the coefficient with respect to the fast variable, the
slow part Y ε

t will converge to Ȳt , where

dȲt = F̄ (Ȳt)dt + dWt , Y0 = y ∈ Rd

with

F̄ (y) :=

∫
Rd

F (x , y)µ(dx).
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ε
t )dt + dWt , Y0 = y ∈ Rd (1.1)

Intuitively,
Xt/ε ⇒ µ(dx) as ε→ 0.

Thus, by averaging the coefficient with respect to the fast variable, the
slow part Y ε

t will converge to Ȳt , where

dȲt = F̄ (Ȳt)dt + dWt , Y0 = y ∈ Rd

with

F̄ (y) :=

∫
Rd

F (x , y)µ(dx).

This theory, known as the averaging principle, was first developed by
Bogolyubov (1937) for ODEs and extended to the SDEs by Khasminskii
(1966).
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ftBackground - Averaging principle

Consider the following fast-slow stochastic system in Rd1+d2 :
dX ε

t = ε−1b(X ε
t ,Y

ε
t )dt + ε−1/2σ(X ε

t ,Y
ε
t )dW 1

t ,

dY ε
t = F (X ε

t ,Y
ε
t )dt + G (Y ε

t )dW 2
t ,

X ε
0 = x ∈ Rd1 , Y ε

0 = y ∈ Rd2 ,

(1.2)

where 0 < ε� 1 is a small parameter.

The intuitive idea for deriving a simplified equation for (1.2) is based on
the observation that:

� during the fast transients, the slow variable remains “constant”;

� by the time its changes become noticeable, the fast variable has
almost reached its quasi-steady state.
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ftBackground - Averaging principle

� With the natural time scaling t 7→ εt, the process X̃ ε
t := X ε

εt satisfies

dX̃ ε
t = b(X̃ ε

t ,Y
ε
εt)dt + σ(X̃ ε

t ,Y
ε
εt)dW̃

1
t ,

where W̃ 1
t := ε−1/2W 1

εt is a new BM.

Thus we need to consider the auxiliary process X y
t which satisfies the

frozen equation

dX y
t = b(X y

t , y)dt + σ(X y
t , y)dW 1

t , X y
0 = x ∈ Rd1 .

Under certain recurrence conditions, the process X y
t process a unique

invariant measure µy (dx).
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ftBackground - Averaging principle

� Then by averaging the coefficients with respect to parameter in fast
variable, the slow part Y ε

t will converge to Ȳt , where

dȲt = F̄ (Ȳt)dt + G (Ȳt)dW
2
t

with

F̄ (y) :=

∫
Rd1

F (x , y)µy (dx).
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ftBackground - Averaging principle

. Strong convergence:

sup
t∈[0,T ]

E|Y ε
t − Ȳt | 6 CT ε

1/2.

History results:

Freidlin and Wentcell (1998), Pavliotis and Stuart (2008), · · · .
Condition: all the coefficients are Lipschitz continuous.

If G depends on the fast variable x , then the strong convergence may
not hold.

The convergence rate is important for numerical schemes (called
HMM) for multiscale systems (see e.g. [E. etc, 2005, CPAM]).
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D
ra

ftBackground - Normal deviation

However, the time scale separation is never infinite in reality.

For small but positive ε, the process Y ε
t will experience fluctuations

around its average Ȳt .

To leading order, these fluctuations can be captured by characterizing the
asymptotic behavior of the normalized difference

Z εt :=
Y ε
t − Ȳt√
ε

=
1√
ε

∫ t

0

[
F (X ε

s ,Y
ε
s )− F̄ (Ȳs)

]
ds

as ε tends to 0.
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]
ds

as ε tends to 0.

Longjie Xie (JSNU) Multiscale stochastic systems July 15, 2021 8 / 26



D
ra

ftBackground - Normal deviation

When G ≡ Id2 , the deviation process Z εt is known to converge weakly to
Z̄t with

dZ̄t = ∇y F̄ (Ȳt)Z̄tdt + ζ(Ȳt)dW̃t ,

where W̃t is another standard Brownian motion, and the new diffusion
coefficient is given by

ζ(y) :=

√∫ ∞
0

∫
Rd1

E
[
F (X y

t (x), y)− F̄ (y)
][
F (x , y)− F̄ (y)

]∗
µy (dx)dt.

Such result, also known as the Gaussian approximation, is an analogue of
the functional central limit theorem.
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ftMain results

Consider the following multiscale SDE in Rd1+d2 :
dX ε

t = α−2ε b(X ε
t ,Y

ε
t )dt + β−1ε c(X ε

t ,Y
ε
t )dt + α−1ε σ(X ε

t ,Y
ε
t )dW 1

t ,

dY ε
t = F (X ε

t ,Y
ε
t )dt + γ−1ε H(X ε

t ,Y
ε
t )dt + G (Y ε

t )dW 2
t ,

X ε
0 = x ∈ Rd1 , Y ε

0 = y ∈ Rd2 ,
(2.3)where the small parameters αε, βε, γε → 0 as ε→ 0.

Longjie Xie (JSNU) Multiscale stochastic systems July 15, 2021 10 / 26



D
ra

ftMain results

Consider the following multiscale SDE in Rd1+d2 :
dX ε

t = α−2ε b(X ε
t ,Y

ε
t )dt + β−1ε c(X ε

t ,Y
ε
t )dt + α−1ε σ(X ε

t ,Y
ε
t )dW 1

t ,

dY ε
t = F (X ε

t ,Y
ε
t )dt + γ−1ε H(X ε

t ,Y
ε
t )dt + G (Y ε

t )dW 2
t ,

X ε
0 = x ∈ Rd1 , Y ε

0 = y ∈ Rd2 ,
(2.3)where the small parameters αε, βε, γε → 0 as ε→ 0.

� there exist two time scales in the fast motion X ε
t ;

� even the slow process Y ε
t has a fast varying component, which is

known to be closely related to the homogenization in PDEs.

Longjie Xie (JSNU) Multiscale stochastic systems July 15, 2021 10 / 26



D
ra

ftMain results

Consider the following multiscale SDE in Rd1+d2 :
dX ε

t = α−2ε b(X ε
t ,Y

ε
t )dt + β−1ε c(X ε

t ,Y
ε
t )dt + α−1ε σ(X ε

t ,Y
ε
t )dW 1

t ,

dY ε
t = F (X ε

t ,Y
ε
t )dt + γ−1ε H(X ε

t ,Y
ε
t )dt + G (Y ε

t )dW 2
t ,

X ε
0 = x ∈ Rd1 , Y ε

0 = y ∈ Rd2 ,
(2.3)where the small parameters αε, βε, γε → 0 as ε→ 0.

� there exist two time scales in the fast motion X ε
t ;

� even the slow process Y ε
t has a fast varying component, which is

known to be closely related to the homogenization in PDEs.

History results:
• Papanicolaou, Stroock and Varadhan (1976);
• Pardoux and Veretennikov (2001, 03, 05, AOP);
• Khasminskii and Yin (2007, JDE).
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t )dt + G (Y ε

t )dW 2
t ,

X ε
0 = x ∈ Rd1 , Y ε

0 = y ∈ Rd2 ,
(2.3)where the small parameters αε, βε, γε → 0 as ε→ 0.

A particular case:{
dV ε

t = −ε−1/2∇V(Y ε
t )dt − ε−1γ(Y ε

t )V ε
t dt + ε−1/2σ(Y ε

t )dW 1
t ,

dY ε
t = ε−1/2V ε

t dt,

which is equivalent to the the overdamped stochastic Langevin equation:

εŸ ε
t = −∇V(Y ε

t )− γ(Y ε
t )Ẏ ε

t + σ(Y ε
t )Ẇt .
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ftMain results - functional LLN

We need to study the following Poisson equation in Rd1 :

L0(x , y)Φ(x , y) = −H(x , y), x ∈ Rd1 , (2.4)

where y ∈ Rd2 is a parameter, and L0(x , y) is given by

L0(x , y) :=

d1∑
i ,j=1

aij(x , y)
∂2

∂xi∂xj
+

d1∑
i=1

bi (x , y)
∂

∂xi

with a(x , y) = σ(x , y)σ∗(x , y).

(AH): the drift H is centered, i.e.,∫
Rd1

H(x , y)µy (dx) = 0, ∀y ∈ Rd2 .

[Röckner and X., 2020, AOP] =⇒ ∃ ! solution Φ to equation (2.4).
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ftMain results - functional LLN

Depending on the orders that αε, βε, γε go to zero, we will have two
different regimes of interaction, i.e.,

lim
ε→0

αε
γε

= 0 and lim
ε→0

α2
ε

βεγε
= 0, Case 1;

lim
ε→0

αε
γε

= 0 and α2
ε = βεγε, Case 2.

(2.5)
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ftMain results - functional LLN

Theorem 1 [Röckner and X., (2021) CMP]

The slow process Y ε
t will converge strongly to Ȳ k

t , where for k = 1, 2,

dȲ k
t = F̄k(Ȳ k

t )dt + G (Ȳ k
t )dW 2

t ,

and the averaged drift are given by

F̄1(y) :=

∫
Rd1

F (x , y)µy (dx); (Case 1)

F̄2(y) :=

∫
Rd1

[
F (x , y) + c(x , y) · ∇xΦ(x , y)

]
µy (dx). (Case 2)
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ftMain results - functional LLN

I Remark:

When c = H ≡ 0, αε =
√
ε and b,F ∈ C δ,ϑx ,y , we obtain

sup
t∈[0,T ]

E|Y ε
t − Ȳ 1

t | 6 CT ε
(ϑ∧1)/2.

Note that the convergence rate does not dependent on the regularity
of the coefficients w.r.t. the fast variable.
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ftMain results - functional CLT

We first study SDE (2.3) with H ≡ 0, i.e., there is no fast term in the slow
component:{

dX ε
t = α−2ε b(X ε

t ,Y
ε
t )dt + β−1ε c(X ε

t ,Y
ε
t )dt + α−1ε σ(X ε

t ,Y
ε
t )dW 1

t ,

dY ε
t = F (X ε

t ,Y
ε
t )dt + G (Y ε

t )dW 2
t .

According to Theorem 1 (Case 1), we have

E|Y ε
t − Ȳ 1

t | 6 C0

(
αε + α2

ε/βε
)
.

We intend to characterize the asymptotic behavior of the normalized
difference

Z εt :=
Y ε
t − Ȳ 1

t

ηε

with proper deviation scale ηε such that ηε → 0 as ε→ 0.
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ftMain results - functional CLT

The natural choice of the deviation scale ηε should be divided into the
following three cases:

ηε =
α2
ε

βε
and lim

ε→0

βε
αε

= 0, Case 0.1;

ηε = αε and lim
ε→0

αε
βε

= 0, Case 0.2;

ηε = αε = βε, Case 0.3.
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ftMain results - functional CLT

Let Γ(x , y) be the unique solution of the following Poisson equation:

L0(x , y)Γ(x , y) = −
[
F (x , y)− F̄1(y)

]
:= −F̃ (x , y),

Define

c · ∇xΓ(y) :=

∫
Rd1

c(x , y) · ∇xΓ(x , y)µy (dx),

F̃ · Γ∗(y) :=

∫
Rd1

F̃ (x , y) · Γ∗(x , y)µy (dx).
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ftMain results - functional CLT

Theorem 2 (CLT: Case 0) [Röckner and X., 2021, CMP]

The limit processes Z̄ 0
`,t (` = 1, 2, 3) for Z εt corresponding to

Case 0.1-Case 0.3 satisfy

dZ̄ 0
1,t = ∇y F̄1(Ȳ 1

t )Z̄ 0
1,tdt +∇yG (Ȳ 1

t )Z̄ 0
1,tdW

2
t + c · ∇xΓ(Ȳ 1

t )dt;

dZ̄ 0
2,t = ∇y F̄1(Ȳ 1

t )Z̄ 0
2,tdt +∇yG (Ȳ 1

t )Z̄ 0
2,tdW

2
t +

√
F̃ · Γ∗(Ȳ 1

t )dW̃t ;

dZ̄ 0
3,t = ∇y F̄1(Ȳ 1

t )Z̄ 0
3,tdt +∇yG (Ȳ 1

t )Z̄ 0
3,tdW

2
t

+ c · ∇xΓ(Ȳ 1
t )dt +

√
F̃ · Γ∗(Ȳ 1

t )dW̃t ,

where W̃t is another Brownian motion independent of W 2
t .
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ftBackground - functional CLT

I Remark:
In particular, when c = H ≡ 0, αε =

√
ε and b,F ∈ C δ,1+ϑx ,y with

δ, ϑ > 0, we have

sup
t∈[0,T ]

∣∣∣E[ϕ(Z εt )]− E[ϕ(Z̄t)]
∣∣∣ 6 CT ε

(ϑ∧1)/2,

where

dZ̄t = ∇y F̄ (Ȳt)Z̄tdt +∇yG (Ȳ 1
t )Z̄tdW

2
t +

√
F̃ · Γ∗(Ȳt)dW̃t .
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ftMain results - functional CLT

Now, we consider Case 1 in (2.5). According to Theorem 1 again, we have

E|Y ε
t − Ȳ 1

t | 6 C1

(
αε/γε + α2

ε/(βεγε)
)
.

Define the normalized difference

Z 1,ε
t :=

Y ε
t − Ȳ 1

t

ηε
.

Then the natural choice of the deviation scale ηε in order to observe
non-trivial behavior for Z 1,ε

t should be divided into the following three
cases: 

ηε =
α2
ε

βεγε
and lim

ε→0

βε
αε

= 0, Case 1.1;

ηε =
αε
γε

and lim
ε→0

αε
βε

= 0, Case 1.2;

ηε =
αε
γε

and αε = βε, Case 1.3.
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ηε =
αε
γε

and lim
ε→0

αε
βε

= 0, Case 1.2;

ηε =
αε
γε

and αε = βε, Case 1.3.
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Recall that Φ is the unique solution to the Poisson equation

L0(x , y)Φ(x , y) = −H(x , y).

Define

c · ∇xΦ(y) :=

∫
Rd1

c(x , y) · ∇xΦ(x , y)µy (dx);

H · Φ∗(y) :=

∫
Rd1

H(x , y) · Φ∗(x , y)µy (dx).
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Theorem 3 (CLT: Case 1) [Röckner and X., 2021, CMP]

The limiting processes Z̄ 1
`,t (` = 1, 2, 3) for Z 1,ε

t corresponding to Case
1.1-Case 1.3 satisfy

dZ̄ 1
1,t = ∇y F̄1(Ȳ 1

t )Z̄ 1
1,tdt +∇yG (Ȳ 1

t )Z̄ 1
1,tdW

2
t + c · ∇xΦ(Ȳ 1

t )dt;

dZ̄ 1
2,t = ∇y F̄1(Ȳ 1

t )Z̄ 1
2,tdt +∇yG (Ȳ 1

t )Z̄ 1
2,tdW

2
t +

√
H · Φ∗(Ȳ 1

t )dW̃t ;

dZ̄ 1
3,t = ∇y F̄1(Ȳ 1

t )Z̄ 1
3,tdt +∇yG (Ȳ 1

t )Z̄ 1
3,tdW

2
t

+ c · ∇xΦ(Ȳ 1
t )dt +

√
H · Φ∗(Ȳ 1

t )dW̃t ,

where W̃t is another Brownian motion independent of W 2
t .
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Finally, we consider Case 2 in (2.5), where homogenization already occurs
even in the LLN. According to Theorem 1 (Case 2), we have

E|Y ε
t − Ȳ 2

t | 6 C2

(
αε/γε + α2

ε/βε
)
.

Define the normalized difference

Z 2,ε
t :=

Y ε
t − Ȳ 2

t

ηε
.

The natural choice of the derivation scale ηε should be divided into the
following three cases:

ηε =
α2
ε

βε
and lim

ε→0

βε
αεγε

= 0, Case 2.1;

ηε =
αε
γε

and lim
ε→0

αεγε
βε

= 0, Case 2.2;

ηε =
αε
γε

=
α2
ε

βε
, Case 2.3.
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t − Ȳ 2

t

ηε
.

The natural choice of the derivation scale ηε should be divided into the
following three cases:

ηε =
α2
ε

βε
and lim

ε→0

βε
αεγε

= 0, Case 2.1;
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Recall that

L0(x , y)Φ(x , y) = −H(x , y), L0(x , y)Γ(x , y) = −
[
F (x , y)− F̄1(y)

]
.

Let Ψ solves the following Poisson equation:

L0(x , y)Ψ(x , y) = −
[
c(x , y) · ∇xΦ(x , y)− c · ∇xΦ(y)

]
.

Denote by

c · ∇xΨ(y) :=

∫
Rd1

c(x , y) · ∇xΨ(x , y)µy (dx).
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Theorem 4 (CLT: Case 2) [Röckner and X., 2021, CMP]

The limiting processes Z̄ 2
`,t (` = 1, 2, 3) for Z 2,ε

t corresponding to
Case 2.1-Case 2.3 satisfy

dZ̄ 2
1,t = ∇y F̄2(Ȳ 2

t )Z̄ 2
1,tdt +∇yG (Ȳ 2

t )Z̄ 2
1,tdW

2
t

+
(
c · ∇xΓ + c · ∇xΨ

)
(Ȳ 2

t )dt;

dZ̄ 2
2,t = ∇y F̄2(Ȳ 2

t )Z̄ 2
2,tdt +∇yG (Ȳ 2

t )Z̄ 2
2,tdW

2
t +

√
H · Φ∗(Ȳ 2

t )dW̃t ;

dZ̄ 2
3,t = ∇y F̄2(Ȳ 2

t )Z̄ 2
3,tdt +∇yG (Ȳ 2

t )Z̄ 2
3,tdW

2
t

+
(
c · ∇xΓ + c · ∇xΨ

)
(Ȳ 2

t )dt +

√
H · Φ∗(Ȳ 2

t )dW̃t ,

where W̃t is another Brownian motion independent of W 2
t .

Longjie Xie (JSNU) Multiscale stochastic systems July 15, 2021 25 / 26



D
ra

ft
Thank You !

Longjie Xie (JSNU) Multiscale stochastic systems July 15, 2021 26 / 26


	Background
	Averaging principle - functional LLN
	Normal deviations - functional CLT

	Main results
	Functional LLN
	Functional CLT: Case 0
	Functional CLT: Case 1
	Functional CLT: Case 2


